People

Click on the faculty member's name for more information about them.

Gerard Ahern: Ion channels and sensory receptors

Gerard Ahern
Associate Professor, Pharmacology and Physiology
Ahern Lab
gpa3@georgetown.edu
x7-9678
Office: Med-Dent SW401
Lab: Med-Dent SW402
Education: BSc (Hons), 1990, LL. B., 1991, University of Canterbury NZ, PhD 1996 (Australian National University)
Current Research: How do cells detect changes in the external or extracellular environment? We are interested in the fundamental mechanisms that allow cells to sense diverse chemical or physical stimuli. Our focus is a class of membrane ion channels called "Transient Receptor Potential" (TRP) channels. We also explore novel ligand signaling at G-protein coupled receptors both in neurons and immune cells. We use a combination of electrophysiological, cell imaging, genetic and biochemical techniques, and where possible, appropriate animal models. 

Barbara Bayer: CNS control of immune cell function

Barbara Bayer
Professor and Chair , Neuroscience
bayerb@georgetown.edu
(202) 687-1616
Office: NRB EP-04B
Education: Ph.D. (Pharmacology) 1977, Ohio State University
Current Research: Dr. Bayer's research is focused on cellular and molecular mechanisms by which the brain communicates with circulating cells of the immune system. Current studies are focused on identifying specific cellular markers in circulating immune cells which predict the overall vulnerability of the immune system to a repeat exposure to stress and centrally acting drugs. These studies utilize a variety of multidisciplinary approaches including molecular and cellular based assays, genomics, pharmacological strategies, neurological imaging and quantitative histological methods. 

 

Tinatin I Brelidze: Structure and function of ion channels

Tinatin I Brelidze
Assistant Professor, Pharmacology & Physiology
Brelidze Lab
tib5@georgetown.edu
202-687-6178
Office: SE406 Med-Dent
Lab: SE406 Med-Dent
Education: Diploma in Physics (Hons), Tbilisi State University (Georgia), 1996; Ph.D. Physiology & Biophysics, University of Miami, 2003
Current Research: Ion channels are guardians of membrane potential and are essential for the physiological function of every living cell. Abnormalities in ion channel opening and closing (gating) or expression pattern are often linked to inherited or acquired diseases. Our research interests are focused on understanding the mechanisms of ion channel gating. To uncover the novel mechanisms of ion channel gating we use a combination of electrophysiology, X-ray crystallography and fluorescence based methods.

 

Mark P. Burns: Traumatic brain injury and dementia

Mark P. Burns
Assistant Professor, Neuroscience
Laboratory for Brain Injury and Dementia
mpb37@georgetown.edu
202-687-4735
Office: Research Building, WP22a
Lab: Research Building, WG03
Education: National University of Ireland, Galway: B.Sc. (hons), Physiology, 1997; PhD, Pharmacology, 2000
Current Research: The Laboratory for Brain Injury and Dementia (LBID) at Georgetown University studies the acute activation of pathways involved in chronic neurodegenerative diseases such as Alzheimer's disease after traumatic brain injury (TBI) Our aim is to understand if these pathways are playing a role in acute cell death after TBI, and to to understand if the activation of these pathways are involved in development of dementias, such as Alzheimer's disease and chronic traumatic encephalopathy (CTE). We use contusion and concussive brain trauma models in the LBID, and the lab has capability to perform the surgical, behavioral and biochemical aspects of this research. We take advantage of the outstanding core imaging facilities available at Georgetown University, including a small animal imaging laboratory with a 7Tesla magnetic resonance imager, confocal microscopy, stereology, fluorescent and standard microscopy. 

 

Elena Silva Casey: Neural stem cell maintenance and neurogenesis

Elena Silva Casey
Associate Professor, Biology
Casey Lab
emc26@georgetown.edu
202-687-0858
Office: Regents Hall 408
Education: Ph.D. Stanford University, Biology, 1996
Current Research: Our goal is to define the gene network that controls the induction and differentiation of the central nervous system. The CNS is derived from the ectoderm which can develop into either epidermal or neural tissue. Neural tissue then differentiates into either neurons or glial cells. Many of the signal pathways and transcription facors involved in directing these fate choices are known, however, how their actions are coordinated is unknown. To elucidate this mechanism, our studies focus on the function of the SoxB proteins which encode highly conserved, HMG box transcription factors. By studying the regulation and function of the SoxB proteins, we can piece together the steps that drive ectoderm to develop into epidermis and neural tissue to form a neuron. 

 

Thomas M. Coate: Inner ear neurobiology and developmental neuroscience

Thomas M. Coate
Assistant Professor, Biology
Coate Lab
tmc91@georgetown.edu
(202) 687-9143
Office: Reagents Hall 412
Education: B.S. University of Puget Sound; Ph.D. Oregon Health & Science University
Current Research: The long-term goal of the research in the Coate laboratory will be to define the signaling mechanisms underlying neural development within sensory systems and how synaptic connections can be reestablished in cases of damage or disease. In the field of developmental neuroscience, we are now at an exciting time where we can take multi-faceted approaches to understanding (with excellent temporal and spatial resolution) the mechanisms by which precise cell types coordinate appropriate axon guidance decisions and synapse formation. In our research, we aim to understand the mechanisms by which spiral ganglion neurons (SGNs) make functional connections with mechanosensory hair cells in the mouse cochlea. We are currently addressing how secreted Semaphorins, which activate Neuropilin/Plexin co-receptors, control SGN axon guidance decisions in the cochlear sensory epithelium. We are also investigating how the transcription factor Pou3f4 controls the expression of axon guidance factors in the developing cochlea (such as ephrins and Eph receptors) and how those factors control cochlear innervation. The cochlea provides an excellent model for discovering how circuits assemble within a complex organ system, as it is composed of an array of cell types and structures precisely arranged to detect a range of sound frequencies.

 

Katherine Conant: The role of proteolysis in synaptic structure and function

Katherine Conant
Research Associate Professor, Neuroscience
kec84@georgetown.edu
(202) 687-8614
Office: NRB, EP-16
Lab: NRB, EP-16
Education: A.B. Biochemistry, Cornell University; M.D. Boston University
Current Research: Matrix metalloproteinases (MMPs) area family of zinc-dependent endopeptidases that are released in a neuronal activity dependent manner. MMP expression and activity can also be dramatically upregulated with injury. Many studies have therefore focused on their role in pathology. Less is known about the role of MMPs in normal CNS physiology, and whether critical physiological processes might be disrupted when MMP levels are pathologically elevated. While recent studies suggest that MMPs play a role in learning and memory, the mechanisms by which they do so are not well understood. Similarly, how excessive MMP activity might contribute to synaptic injury is not clear. Our work is focused on specific mechanisms by which MMPs can influence neuronal and synaptic structure and function. Our focus is on cleavage of synaptic adhesion molecules and thrombin type G protein coupled receptors. Close collaborators include Drs. Seung Lim and Rhonda Dzakpasu. 

 

Maria J. Donoghue: Molecular basis of cerebral cortical development

Maria J. Donoghue
Associate Professor, Biology
Donoghue Laboratory
mjv23@georgetown.edu
(202) 687-5579
Office: Regents Hall 410
Education: B.S. Boston College; Ph.D. Washington University
Current Research: We examine the molecular factors that guide the nervous system in generating the proper number of cells, instructing proper migration, establishing correct morphology, promoting functional connectivity, and tuning neural circuits, focusing on cerebral cortical development. Molecular, biochemical, cell biological, behavioral, and organismal approaches are taken to understand the role of particular molecules in the generation, migration, and differentiation of cerebral cortical neurons. In vitro cell and organotypic culture complement in vivo manipulation- chronic or acute gain- or loss-of-function- in evaluating each molecules role in corticogenesis. We are investigating the roles of cell surface-bound signaling molecules, transcription factors, and regulatory RNAs in coordinating cerebral cortical development.

 

Alexander W. Dromerick:Brain recovery and motor control in stroke, arm amputation

Alexander W. Dromerick
Professor, Vice Chair, Rehabilitation Medicine (primary), 
Neurology (secondary)
NRH Neuroscience Research Center
awd22@georgetown.edu
(202) 877-1932
Office: National Rehabilitation Hospital
Lab: Research Division
Education: MD (University of Maryland, 1986, Medicine)
Current Research: My research focuses on human subjects research in people with stroke and arm amputation. I use clinical populations to ask questions about the nature of motor recovery or acquisition of prosthesis skill, changes in brain physiology, and alterations in health-related behaiviors. Techniques used include clinical trials, neuroimaging, upper extremity biomechanics, transcranial magnetic stimulation, and measurement methodology. I collaborate with colleagues at National Rehabilitation Hospital, Georgetown University, Catholic University, and nationally. 

 

Rhonda Dzakpasu: Spatio-temporal patterning in in vitro neural systems

Rhonda Dzakpasu
Assistant Professor, Physics and Pharmacology
Neural Dynamics Lab
dzakpasu@physics.georgetown.edu
(202) 687-4918
Office: Med-Dent SE 407
Lab: Med-Dent SE 407
Education: University of Michigan, Ph.D., 2003 
Current Research: We use arrays of extracellular multi-electrodes to record and stimulate electrical activity from cultured neural circuits as well as from acute neural slices. We modulate network rhythmicity by manipulating the balance between excitation and inhibition to investigate the principles by which neurons interact. What is the causal role of emergent coherent activity for neuronal communication?

 

Guinevere Eden: Neural representation of reading and reading disorders.

Guinevere Eden
Professor, Pediatrics
Center for the Study of Learning
edeng@georgetown.edu
x7-6893
Office: Bldg D, Rm 143
Lab: Bldg D, Suite 150
Education: B.Sc., University College London, Physiology, 1989. D.Phil., Oxford University, Physiology, 1993.
Current Research: Dr. Eden's research has focused on the application of functional neuroimaging techniques to study the neural basis of reading and how it may be altered in individuals with developmental disorders or altered early sensory experience. Further, she and her colleagues are researching how reading is impacted by instructions or mode of communication and are utilizing functional MRI to study the neurobiological correlates of reading remediation.

 

Howard J. Federoff: Gene therapy and neurodegenerative diseases

Howard J. Federoff, MD, PhD
Executive Vice President for Health Sciences, and Executive Dean School of Medicine; Professor , Neurology and Neuroscience
Federoff lab
hjf8@georgetown.edu
202-687-4600
Office: Building D, room 120
Lab: Building D, room 361-369
Education: Albert Einstein College of Medicine: MS, PhD, MD
Current Research: Dr. Federoff's research interests include gene therapy and neurodegenerative diseases such as Parkinson's, Alzheimer's, and prion diseases; he holds a number of medical patents with a number of other patents pending. His research has received support from the National Science Foundation, the National Institutes of Health (NIH), and the U.S. Department of Defense, among other sources. He has published widely in peer-reviewed journals and served as a reviewer for many of these journals, and currently serves on the editorial boards of five such journals, including the Journal of Parkinson's Disease, Brain and Mind, Experimental Neurology, and Gene Therapy. Dr. Federoff served as Chair of the NIH Recombinant DNA Advisory Committee from 2007-2010.

 

Patrick A. Forcelli: Neuropharmacology and neural circuits of epilepsy and behavior

Patrick A. Forcelli
Assistant Professor, Pharmacology & Physiology
Laboratory of Molecules, Circuits and Behavior
paf22@georgetown.edu
x7-7825
Office: NRB W214
Lab: NRB W217
Education: Ph.D. (Georgetown University, Neuroscience, 2011)
Current Research: Current Research (with Drs. Gale and Malkova): 1. Vulnerability of the developing brain to drug induced damage - Some antiepileptic drugs induce apoptosis in the neonatal rat brain, disrupt functional and morphological synaptic development, and alter behavioral function. We are continuing to examine new drugs, identify mechanisms and search for therapeutic approaches to minimize long-term effects. 2. Hippocampal and basal ganglia circuits in seizure progression. These circuits are important for a variety of cognitive and emotional functions, which are also being explored in behaving animal models. To determine the role of these circuits we are using a combination of lesions, focal pharmacological (in rodents and primates), electrical, and state of the art pharmacogenetic and optogenetic methods.

 

 

Rhonda B. Friedman: Cognitive neuroscience of language impairment, treatment, & recovery

Rhonda B Friedman
Professor, Neurology
Center for Aphasia Research and Rehabilitation
RFriedman@georgetown.edu
784-7134
Office: Building D, Room 203B
Lab: Building D, Suite 207
Education: B.A., University of Pennsylvania, 1974; Ph.D., MIT, 1978
Current Research: Dr. Friedman's research focuses on how language is processed in the normal brain; how language breaks down in a brain damaged by stroke, head injury, or dementia; how the brain recovers language function after injury; and how the recovery process can be aided by non-pharmaceutical therapies. Research focuses particularly on semantic memory, naming, and reading. Techniques employed include behavioral studies; treatment studies; ERP; eye-tracking; and imaging studies. Current studies focus on learning paradigms in rehabilitation, and prophylaxis of cognitive decline in dementia.

 

Karen Gale: Mechanisms of epilepsy, movement disorders, and reward

Karen Gale
Professor, Pharmacology & Physiology
Laboratory of Molecules, Circuits, and Behavior

Office: NRB W215
Lab: NRB W217
Education: Ph.D., U of Wash., 1975
Current Research: We investigate GABA and glutamate transmission in limbic and basal ganglia structures for the control of epilepsy, movement, and learning. In the rodent and primate, we have identified substantia nigra and superior colliculus as key sites for the control of seizures, as well as "area tempestas" in piriform cortex, which interacts with perirhinal cortex to trigger seizures. We also study the role of these circuits for regulating movement (Parkinson's, Huntington's diseases), emotional responses (PTSD), and memory. Related studies examine the impact of exposure to antiepileptic drugs and seizures on plasticity in the developing brain and long-term functional outcomes. Finally, we have demonstrated neurotrophic and protective effects of repeated electroshock seizures and are exploring the underlying mechanisms and potential benefits for recovery of function after neural injury. 

 

Richard A. Gillis: Neural circuits in brain that control GI function

Richard A. Gillis
Professor, Pharmacology and Physiology
Gillis Lab
gillisr@georgetown.edu
(202) 687-1607
Office: NW408 Med-Dent
Lab: NW407 Med-Dent
Education: McGill University, Ph.D. 1965 
Current Research: Research in our laboratory focuses on neural circuits that control gastrointestinal function and food intake. The methods used include patch clamp electrophysiology in slices of the brain stem, in vivo recordings of end organ function, microinjection of drugs into the brain, and electron microscopy coupled with immuno-histochemistry. These techniques are used to map the pathways in the brain that affect end organs (such as the stomach), and affect food intake. 

 

Nady Golestaneh: Adult stem cells and age-related neurodegeneration

Nady Golestaneh
Assistant Professor, Ophthalmology, Neurology, Biochemistry
Golestaneh lab
ncg8@georgetown.edu
202-687-4309
Office: Med-Dent Bldg, Room NE 203
Lab: Med-Dent Bldh Room NE 212-218
Education: BS, University of Paris VII, Jussieu; MS, PhD, University of Paris VI, Pierre et Marie Curie, Paris, France
Current Research: Dr. Golestaneh's lab is investigating how aging mechanisms affect the cells and induce diseases such as age-related macular degeneration (AMD). Using patient-specific induced pluripotent stem (iPS) cells Dr. Golestaneh is studying the cellular and molecular mechanisms that induce the AMD and is developing ways to stop this disease from occurring. Another focus of the lab is developing new methods of autologous cell-based therapy for AMD by generating patient-specific stem cell-derived neuroretinal cells. 

 

Adam Green: Cognitive and biological mechanisms of relational thinking

Adam Green
Assistant Professor, Psychology
Cognitive Neurogenetics Lab
aeg58@Georgetown.edu
(202) 687-5581
Office: 302C White Gravenor
Lab: 303 White Gravenor 
Education: Dartmouth College, Ph.D, 2007.
Current Research: My motivating interest is in human intelligence, and especially in understanding how neural and molecular-genetic processes constitute our intelligence. Analogical thinking has been the focus of much of my work because it is a valuable and relatively well-constrained intelligent process. Ongoing projects in my lab aim to delineate pathways of effect through which genes influence cognitive abilities by influencing the function and/or structure of the specific neurophysiology that supports those abilities.

 

Brent T. Harris: Neuroinflammation in neurodegenerative disease; glial-neuronal talk

Brent T Harris
Director of Neuropathology and Associate Professor, Neurology and Pathology
Neuropathology Research Lab
bth@georgetown.edu
687-5345
Office: Bldg D, 202C
Lab: Bldg D, 335/7/9
Education: BA Colby 1982, MS Hahnemann 1988, MD/PhD GU 1995
Current Research: Dr. Harris has dual appointments in Neurology and Pathology. As a neuropathologist and physician-scientist Dr. Harris has clinical, research, and teaching interests in neurological diseases. He has active collaborations and research programs in his own lab in the areas of neurodegeneration, CNS neoplasia, and traumatic brain injury. His primary interest is in understanding how mechanisms of neuroinflammation and glial-neuronal communication influence the pathophysiology of neurological diseases. In addition to investigating disease processes he also seeks to uncover targets for pharmacological intervention.

 

Michelle Harris-Love: Motor system neuroplasticity & stroke recovery

Michelle Harris-Love
Assistant Professor and Research Scientist, Rehabilitation Medicine
Mechanisms Of Therapeutic Rehabilitation (MOTR) lab
michelle.l.harris-love@medstar.net
202-877-1558
Office: NRH, 1074
Lab: NRH, 1025
Education: Mayo School of Health Sciences, M.S. Physical Therapy, 1997; University of Maryland, Ph.D. Rehabilitation Neuroscience, 2004.
Current Research: Non-invasive brain imaging and stimulation techniques have opened up the possibility of addressing key mechanistic questions related to human neuro-rehabilitation. We use these techniques to localize, quantify, and modulate brain activity in association with the performance of upper extremity motor tasks. One technique, transcranial magnetic stimulation (TMS), is used to painlessly stimulate the motor cortex and other cortical areas. We are using these methods to examine, for example, cortical responses to different types of motor practice or the role of a particular cortical area in the planning and execution of a motor task after stroke. This type of mechanistic information could be used to develop improved interventions for brain-injury-related motor impairments. 

 

Darlene V. Howard: Cognitive aging & cognitive neuroscience of aging

Darlene V. Howard
Davis Family Distinguished Professor of Psychology
Cognitive Aging Lab
howardd@georgetown.edu
(202) 687-4271
Office: WGR (301A)
Lab: WGR (301N)
Education: B.S., Juniata College, 1969; M.A. Brown University, 1971; Ph.D. Brown University, 1974
Current Research: Our lab investigates which cognitive and neural systems decline and which are spared in the course of aging. We focus especially on implicit learning and memory which can occur without intent or awareness. We are working to understand why some forms of learning and memory decline while others don't, how these age differences are related to changes in the brain, and how learning and memory can be maximized at all ages. We use behavioral and neuroimaging techniques, including fMRI, DTI, and ERP. Current research in our group also examines the relation between different forms of implicit learning and genotype, individual differences (e.g., in reading ability, expertise) and interventions (e.g., nature, exercise). 

 

Jeffrey K. Huang: CNS neuron-glia interactions

Jeffrey K. Huang
Assistant Professor, Biology
Huang Laboratory
jh1659@georgetown.edu
202-687-1741
Office: Regents 406
Lab: Regents 411
Education: B.A., Washington University; Ph.D., Mount Sinai School of Medicine of NYU
Current Research: My lab is interested in the biology and pathology of glial cells. We focus on oligodendrocytes, a type of glia, whose cellular processes engage with and enwrap CNS axons, and form the lipid-rich myelin membranes required for rapid, saltatory conduction. Myelin destruction in diseases such as multiple sclerosis impairs axonal conduction and results in progressive axonal degeneration. We are currently investigating the mechanisms by which oligodendrocytes interact and communicate with axons, and how their interactions might promote axonal integrity and survival. We are also investigating the mechanism of myelin regeneration, with a focus on how oligodendrocytes regenerate from endogenous neural progenitor cells to replace myelin during homeostatic turnover or after demyelination. We use primary oligodendrocyte/neuron co-cultures, transgenic mice, and models of experimental CNS injury and demyelination, combined with molecular biology and imaging tools to address these questions.

 

Chou P. Hung: Neural representation underlying object recognition

Chou P. Hung
Assistant Professor (research track), Neuroscience
Laboratory of Visual and Auditory Neurophysiology
ch486@georgetown.edu
(202) 687-2230
Office: NRB WG18
Lab: NRB WP24B
Education: Ph.D. Yale University, Neuroscience, 2002
Current Research: We rapidly and effortlessly recognize objects and faces even though we never see the same retinal image twice. We comprehend speech across speakers, and we can articulate through different instruments. How does the brain recognize and produce visual and sound objects, and what are the underlying computations that support generalization? We are mapping the representation at high resolution (<< 1 mm) via multielectrode recording and optical imaging of local neuronal assemblies in non-human primates, then validating these representations via fMRI and behavioral measures in humans. These cross-validated measurements allow us to revisit specific feature representations and computations across subjects and species. These measurements also provide a biological basis for computational models. A long-term goal is to be able to reconstruct or generate novel percepts from the representation of component features.

 

Jagmeet Kanwal: Neural coding, dynamics, organization and behavior

Jagmeet Kanwal
Associate Professor, Neurology, Neuroscience, and Psychology
Complex Adaptive Systems Neuroscience
kanwalj@georgetown.edu
202-687-1305
Office: NRB WP09A
Lab: NRB WP09
Education: LSU, Baton Rouge, Ph.D. in Physiology and Zoology, 1986
Current Research: My lab is equipped to use sounds and computational models to probe neural circuits so that we can understand how the brain works, what its design features are, and how neurons compute. We tackle these questions using a multiplicity of techniques, organisms, and approaches to obtain neurometrics across a wide range of spatial, spectral, and temporal scales. Topics of interest: 1. Sensory coding and computational plasticity: how are species-specific sounds encoded/decoded within the cortex and amygdala? Solution of this nontrivial problem may inform us about the origins and mechanisms for speech and music perception and facilitate design of neuroprosthetic devices. 2. Cortico-cortical and cortico-limbic interactions: We study the role of functional connectivity, oscillations and single-unit responses. 3. Learning, Memory, and Distress: The brain exhibits multistate and multisite adaptive plasticity for decision-making. How do anxiety, traumatic stress, and autism spectrum disorders emerge? 

 

Ken Kellar: Nicotinic acetylcholine receptors in CNS and peripheral nervous system

Ken Kellar
Professor, Pharmacology and Physiology
Kellar Lab
kellark@georgetown.edu
(202) 687-1032
Office: Medical Dental Bldg NE413
Lab: Medical Dental Bldg NE416-420
Education: Ph.D., Pharmacology, The Ohio State University, 1974
Current Research: My laboratory studies the subunit composition, pharmacological properties and regulation of neuronal nicotinic receptors. We are particularly interested in understanding the importance of desensitization of these receptors and the mechanisms by which chronic exposure to nicotine increases these receptors in brain. 

 

Lawrence Kromer: Neurotrophic factors and their receptors

Lawrence Kromer
Professor, Neuroscience
Kromer Lab
kromerl@georgetown.edu
Office: NRB EG-09a
Lab: NRB EG-09 
Education: University of Chicago, Ph.D. 1977
Current Research: My laboratory is involved studies determining whether ephrins and Eph receptors interact to generate signals that regulate the extent of axonal regeneration and synaptic plasticity after CNS trauma and during development.

 

Kathy Maguire-Zeiss: Parkinson's Disease: Role of synuclein & inflammation

Kathy Maguire-Zeiss
Associate Professor, Neuroscience
Maguire-Zeiss Lab
km445@georgetown.edu
x7-2791
Office: NRB EP08
Lab: NRB EP08
Education: Albright College, BS, 1981; Pennsylvania State University College of Medicine, Ph.D., 1987
Current Research: My laboratory is focused on understanding the mechanisms involved in age-related progressive neurodegenerative diseases. Specifically, we are investigating why the nigrostriatal pathway degenerates in Parkinson's disease (PD). Although the cause of PD is unknown we believe that the etiology involves both genetic changes and environmental toxicants. We are currently following several lines of investigation including the role of increased oxidative stress, protein misfolding and inflammation using mouse transgenic and toxicant models as well as cell culture technologies. Thus far we have shown that one protein known to be involved in Parkinson's disease, α-synuclein, can increase oxidative stress and proinflammatory molecules suggesting that these molecular events are important early in this disease. We hope our studies will help us to better understand how inflammation is involved early in PD. Finally, our goal is to develop novel therapies for PD.

 

Ludise Malkova: Neural substrates of emotional and social behavior in animal models

Ludise Malkova
Associate Professor, Pharmacology
malkoval@georgetown.edu
x7-0224
Office: NRB, W209B
Lab: DCM
Education: BA, MA Charles University Prague, Czech Republic; Ph.D. (1986) Czechoslovak Academy Sciences, Prague, Czech Republic
Current Research: Neural substrates of social and emotional behavior; the role of the amygdala and orbitofrontal cortex in processing reward; medial temporal lobe structures (hippocampus, perirhinal cortex) and cognitive functions (object recognition and spatial memory); amygdala and midbrain (superior colliculus) interactions; autism, PTSD; reversible pharmacological manipulations of discrete brain structures, systemic drug effects.

 

Abigail Marsh: Neurocognitive basis of emotion, empathy, and social behaviors

Abigail Marsh
Assistant Professor, Psychology
Laboratory on Social & Affective Neuroscience
aam72@georgetown.edu
(202) 687-4100
Office: WGR 302-A
Lab: WGR 302
Education: Harvard University, Ph.D. Social Psychology, 2004
Current Research: How do people understand what others think and feel? How does that relate to what they think and feel themselves? What causes people to want to help or harm others? These are the questions that underlie research on empathy and mentalizing. Research in the lab is aimed at understanding aspects of human social interactions, emotional functioning, and empathy using cognitive neuroscience methods. We focus in particular on emotion and on nonverbal communication. Our research includes studies with adolescents and adults, incorporating neuroimaging, cognitive and behavioral testing, and psychopharmacological techniques.

 

Andrei Medvedev: Neural mechanisms of cognitive processes

Andrei Medvedev
Associate Professor, Neurology
Medvedev Lab
am236@georgetown.edu
(202) 687-5126
Office: Bldg D 154
Education: Ph.D. in Neurophysiology, Russian Academy of Sciences, Moscow, 1989
Current Research: Dr. Medvedev's expertise includes systems electrophysiology, signal analysis and neural network modeling. His research interests focus on neural mechanisms of cognitive processes in normal and neurological pathology. His current research combines a new technology of noninvasive near-infrared (NIR) optical functional imaging of the brain with a more traditional electrophysiological analysis of on-going and event-related electrical activity (EEG, ERP, evoked and induced gamma-band oscillations).

 

Italo Mocchetti: Neurobiology of neurotrophic factors

Italo Mocchetti
Professor and Vice-Chair, Neuroscience, secondary appointment in Pharmacology
moccheti@georgetown.edu
x7-1197
Office: NRB, WP13
Lab: NRB, EG19
Education: Ph.D., University of Milan, Italy, 1982
Current Research: Neurotrophic factors influence axon and dendrite growth, synaptic plasticity and neurogenesis, and the interaction of neurons with glial cells. They play critical roles in preventing neurological diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke and epilepsy, but they can also promote neuronal apoptosis. Our laboratory has recently demonstrated that the neurotrophin brain-derived neurotrophic factor (BDNF) modulates the expression and function of chemokine receptors that contribute to AIDS dementia complex. We envision this research as catalyzing important new efforts to translate the basic science of the neurotrophins into effective new treatments for neurodegenerative diseases. 

 

Charbel (Charlie) Moussa: The role of autophagy in AD, PD and ALS

Charbel Moussa
Assistant Professor, Neuroscience
The Laboratory for Dementia and Parkinsonism
cem46@georgetown.edu
(202) 687-7328
Office: NRB, WP09B
Education: M.B. (MD equivalent); University of Sydney, Australia, PhD, 2002
Current Research: Our laboratory evaluates potential therapeutic drugs for neurodegenerative diseases in pre-clinical models and clinical trials. We investigate cellular, biochemical and pathological mechanisms that underlie neurodegenerative diseases with dementia and Parkinsonism, including Alzheimers disease (AD) and other dementias, and Parkinsons disease (PD) and related movement disorders. We also investigate the neuro-pathological and biochemical pathways involved in the spectrum of motor neuron disease (MND) with fronto-temporal dementia (FTD).

 

Elissa L. Newport: Language acquisition, recovery of function in children and adults

Elissa L. Newport
Professor of Neurology, Director of CBPR, Neurology
Center for Brain Plasticity and Recovery
eln10@georgetown.edu
x7-6824
Office: Bldg D, Room 168
Lab: Bldg D, Suite 165
Education: Ph.D. University of Pennsylvania, 1975
Current Research: Dr. Newport's research examines language acquisition and other types of implicit pattern learning. We focus on young children, asking how they acquire spoken or sign languages, even when they may have little consistent or complex linguistic input. Our studies include fieldwork on young, developing sign languages around the world, and also experiments in the lab, investigating how children and adults learn miniature artificial languages that reproduce specific properties of natural languages and their acquisition circumstances. We have shown that children expand languages as they learn them, making them more consistent and shifting them toward universal principles of language structure. We also study how children and adults acquire or recover language after left hemisphere strokes. This research investigates the mechanisms underlying language acquisition and language reorganization after brain injury, with a particular interest in developmental plasticity.

 

Prosper N'Gouemo: Ion channels, seizures, and epilepsy

Prosper N'Gouemo
Assistant Professor, Pediatrics
pn@georgetown.edu
202-687-8464
Office: Bldg D, 285
Lab: Bldg D, 272
Education: Ph.D. (Physiology), University of Montpellier I, France
Current Research: Our long term goal is to understand how controlling voltage-gated calcium channels and related calcium signaling can be used to prevent and treat inherited seizures, acquired epileptogenesis, alcohol withdrawal seizures, and neonatal seizures following alcohol exopsure during gestation. 

 

Daniel Pak: Molecular mechanisms of synaptic plasticity

Daniel Pak
Associate Professor, Pharmacology and Physiology
Molecular Neurobiology of Memory [mNeMe]
dtp6@georgetown.edu
x7-8750
Office: Med-Dent C405
Lab: Med-Dent C405
Education: Harvard University, B.A., 1991; University of California at Berkeley, PhD, 1996
Current Research: My laboratory is interested in the molecular changes that occur at CNS synapses in response to experience. We utilize a combination of approaches ranging from molecular biology and biochemistry to cell biology, imaging, and mouse genetics to address three major questions: 1) how do neurons encode long-term storage of information? 2) how do neurons maintain stability of function by homeostatic synaptic plasticity mechanisms? and 3) how does failure of these mechanisms contribute to neurological and neurodegenerative disorders?

 

John Partridge: Small molecule neurotransmitters in the basal ganglia

John Partridge
Research Assistant Professor, Pharmacology
Vicini Lab
jp374@georgetown.edu
(202) 687-5196
Office: BSB 235
Lab: BSB 230
Education: Xavier, BS, 1993; Vanderbilt, PhD, 2000
Current Research: My varied research interests include determining the mechanisms governing synaptic transmission in the dorsal striatum using electrophysiological, genetic and biochemical methods. The striatum is a crucially important brain region involved in the smooth execution of motor control and other various functions. Disruptions in striatal physiology result in debilitating motor problems exemplified by Parkinson's disease and Huntington's disease. My research goals are to more fully understand the complex interactions of small molecule neurotransmitters in the striatum. These include investigating the relationships and crosstalk among glutamate, dopamine, acetylcholine and endocannabinoids governing normal and pathological states which dictate striatal output.

 

Josef P. Rauschecker: Cortical plasticity and neuronal networks in sensory systems

Josef P. Raushecker
Professor, Neuroscience
Laboratory for Integrative Neuroscience and Cognition 
rauschej@georgetown.edu
(202) 687-8842 
Office: NRB WP19 
Lab: NRB WP23 
Education: Ph.D., Munich Institute of Technology (1980); D.Sc. Neurophysiology, Tubingen University (1985). 
Current Research: Dr. Rauschecker is interested in the functional organization and plasticity of the cerebral cortex. He is especially interested in how perception, memory, and language are implemented by the brain. His laboratory is one of only a handful in the country engaged in the neurophysiology of auditory cortex in nonhuman primates. In parallel studies, he is using functional magnetic resonance imaging (fMRI) in humans for the study of the neural basis of language, music and other higher auditory processing. His laboratory is also interested in the effects of sensory deprivation during brain development, relating to the question of how the brain of individuals with early blindness or deafness gets reorganized. 

 

G. William Rebeck: APOE and Alzheimer's Disease

G. William Rebeck
Professor, Department of Neuroscience
Rebeck Lab
gwr2@georgetown.edu
x7-1534
Office: NRB WP-10
Lab: NRB WP-04; NRB WP-27
Education: A.B. (Cornell University 1982); Ph.D. (Harvard University, 1991)
Current Research: I have been studying the effect of APOE on Alzheimer's disease pathogenesis since 1993. APOE is the strongest genetic risk factor for Alzheimer's disease, with the APOE4 allele increasing the risk of Alzheimer's disease by over three-fold. We study the role of apoE in synapse formation and neuronal signaling, and its effects on glial activation using cell lines and primary cell culture systems. In particular, we focus on the family of cell surface apoE receptors, which play important roles in cholesterol regulation, neuronal migration in development, and cell signaling. We also study APOE knock-in mice, which express the human APOE alleles under the endogenous mouse APOE promoter. We have found that the APOE4 mice have reduced neuronal complexity and increased sensitivity to glial activation These effects of APOE occur in the absence of Alzheimer's disease pathological changes, suggesting that APOE also affects normal brain patterns and functions.

 

Maximilian Riesenhuber: Computational cognitive neuroscience, rapid object recognition, multitasking, reading

Maximilian Riesenhuber
Associate Professor, Neuroscience
Laboratory for Computational Cognitive Neuroscience
mr287@georgetown.edu
(202) 687-9198
Office: NRB WP-12
Lab: NRB WP-01
Education: MIT, PhD, 2000
Current Research: The lab investigates the computational mechanisms underlying human object recognition as a gateway to understanding the neural bases of intelligent behavior. We combine computational models with human behavioral, functional magnetic resonance imaging (fMRI) and electroencephalographic (EEG) data. This comprehensive approach addresses one of the major challenges in cognitive neuroscience today: the necessity to combine data from a range of experimental levels in order to develop a rigorous and predictive model of human brain function that quantitatively and mechanistically links neurons to behavior. This computational grounding of behavior in processing at the neuronal level is of key interest for the investigation of the neural bases of cognitive and behavioral impairments in complex mental disorders, to pave the way for neuroscience-based therapies. In addition, understanding the neural mechanisms underlying object recognition in the brain is of significant interest for Artificial Intelligence, as the capabilities of pattern recognition systems in engineering (e.g., in machine vision or speech recognition) still lag far behind that of their human counterparts in terms of robustness, flexibility, and the ability to learn from few exemplars.

 

Kathryn Sandberg: Structural analysis and regulation of peptide hormone receptors

Kathryn Sandberg
Professor, Nephrology & Hypertension, Dept. of Medicine; Director, CSD
Center for the Study of Sex Differences
sandberg@georgetown.edu
(202) 687-4179
Office: Bldg D 232
Education: Ph.D. (Biochemistry) 1987, University of Maryland, Baltimore
Current Research: Dr. Sandberg's laboratory is investigating the structural analysis and regulation of G protein-coupled receptors in neuronal physiology and pathophysiology. In particular, her research focuses on the receptors for angiotensin II, corticotropin releasing hormone, gonadotropin releasing hormone, vasopressin and neuropeptide Y and their role in neuronal and cardiovascular physiology and pathophysiology. A second major aim of this laboratory is to study mechanisms of G protein-coupled receptor gene regulation. Dr. Sandberg is especially interested in understanding mechanisms of gene control at the posttransciptional level.

 

Ted Supalla: Sign language structure and processing

Ted Supalla
Professor, Neurology
Center for Brain Plasticity and Recovery
trs53@georgetown.edu
Office: Building D, Suite 165
Education: University of California, San Diego, Ph.D. Psychology, 1982
Current Research: Dr. Ted Supalla's research centers on the structure and emergence of sign languages around the world. This has included studies of American Sign Language acquisition and processing, and the evolution and structure of homesign, international pidgin sign, and signed languages in other countries. Comparisons between early and modern ASL, and also between other young and well-developed sign languages, can provide an understanding of how languages form and change, and whether the processes of language change for sign languages are the same as those for spoken languages. Dr. Supalla is also interested in the on-line processing of ASL by native signers, including studies of sentence comprehension, sentence reproduction, and short-term memory in signed versus spoken languages, as well as fMRI studies asking what parts of the brain are activated during visual-gestural language and non-linguistic processing.

 

Peter Turkeltaub: Basic/translational research on language, perception, & plasticity

Peter Turkeltaub
Assistant Professor, Neurology
Cognitive Recovery Lab
turkeltp@georgetown.edu
(202) 784-1764
Office: Bldg D 202A
Education: M.D., Ph.D. (Neuroscience) 2005, Georgetown University
Current Research: Peter Turkeltaub is a cognitive neurologist and neuroscientist whose research investigates the brain's organization for language and other cognitive faculties, how this organization changes in the context of developmental or acquired brain disorders, and how we might enhance recovery. The work is conducted using healthy volunteers and individuals with developmental and acquired language disorders. We use a variety of techniques, primarily TMS, tDCS, fMRI, neuroimaging meta-analysis, and neuropsychology. We aim to expand our methods to include voxel-based lesion analysis, combined tDCS/fMRI, and combined TMS/EEG. A key aim of the laboratory is to develop new treatments for language disorders and translate these treatments to the bedside.

 

Michael Ullman: Cognitive neuroscience of language and memory

Michael Ullman
Professor, Department of Neuroscience
Brain and Language Lab
michael@georgetown.edu
202-687-6064
Office: Building D, 237
Lab: Building D, 237
Education: MIT, Ph.D., 1993
Current Research: Dr. Ullman's research investigates the neural and computational bases of both first and second language, how language and memory are affected in various disorders (e.g., autism, Tourette syndrome, Specific Language Impairment, Parkinson's disease, Alzheimer's disease), and how factors such as sex (male vs. female), handedness (left vs. right), genetic variability, and hormones (e.g., estrogen) affect the neurocognition of language and memory.

 

Jeff Urbach: Axon motility and guidance, biophysics

Jeff Urbach
Professor, Department of Physics
Dynamics Imaging Laboratory
urbachj@georgetown.edu
76594
Office: Regents Hall 320
Lab: Regents Hall 333
Education: Ph.D (Stanford, Physics, 1993)
Current Research: Dr. Urbach has been actively involved in a broad range of interdisciplinary research and training activities. A physicist with a background in materials science and nonlinear dynamics, he began collaborative work in neuroscience over a decade ago. His recent research has focused on using advanced materials fabrication and live cell imaging technologies to elucidate the role of mechanical and structural cues in axon outgrowth and guidance, with the goal of developing novel strategies to engineer nerve regeneration after injury.

 

Chandan Vaidya: Neurobiological basis of cognitive control

Chandan Vaidya
Associate Professor, Psychology; Investigator at Children's National Medical Center
Developmental Cognitive Neuroscience Laboratory
cjv2@georgetown.edu
Office: White Gravenor, 401
Education: Ph.D. in Developmental Psychology, Syracuse University
Current Research: Dr. Vaidya's research program is focused upon characterizing the functional neural architecture of adaptive mechanisms during the life span. Her research focuses on two types of adaptive mechanisms - 1) Processes that require little effort such as learning from environmental regularities without intention or conscious awareness (termed implicit memory and learning); and 2) Processes that are effortful such as voluntary control over thoughts and actions (termed executive control). Further, her studies investigate how these adaptive mechanisms differ across individuals, particularly with respect to genetic functional polymorphisms of the dopamine system (e.g., DAT, COMT).

 

John VanMeter: Use of fMRI, DTI, MRS, etc. to investigate medial prefrontal cortex

John VanMeter
Director of CFMI; Associate Professor, Neurology
Center for Functional and Molecular Imaging
jwv5@georgetown.edu
687-3592
Office: Pre-Clin, Suite LM-14
Lab: Pre-Clin, Suite LM-14
Education: University of Oklahoma, B.S. 1987; Dartmouth College, M.S., 1991; Dartmouth College, Ph.D., 1993
Current Research: My research interests are varied but focus on the interaction of medial prefrontal cortex and the limbic system with regards to emotion regulation in disorders such autism and PTSD. My other area of focus is development and the effects of different environmental influences such as early alcohol initiation. As the Director of the neuroimaging center, I'm also involved in a number of other studies.

 

Stefano Vicini: Ligand gated channels at central synapses

Stefano Vicini
Professor, Pharmacology & Physiology
Lab of Cellular and Molecular Neurophysiology
svicin01@georgetown.edu
(202) 687-6441
Office: BSB, 225
Lab: BSB, 228-230
Education: Ph.D., U Torino, Italy, 1979
Current Research: Using transgenic mice with the two major striatal output pathways labeled we are answering a fundamental question: What role tonic and phasic GABA and NMDA conductance plays in striatal disorders? We are studying the functional consequence of the activation of distinct dopamine receptors on NMDA and GABAa receptor subytpes.Our study has great potential to identify novel therapeutic targets for treating disorders associated with striatal dysfunction including Parkinson's disease, Huntington's disease, tardive dyskinesia, Tourette's syndrome and drug addiction.

 

Barry B. Wolfe: Structure and function of ligand-gated ion channels

Barry B. Wolfe
Professor, Pharmacology
Wolfe Lab
bwolfe01@georgetown.edu
202-687-1420
Office: SW407 Med-Dent
Lab: NE411 Med-Dent
Education: B.S. UCLA, 1967; M.S. CSUN, 1969; Ph.D. U.C. Santa Barbara, 1973
Current Research: The major project involves neuronal nicotinic receptors. These recptors for acetylcholine are important in the brain, mediating nicotine addiction, memory and learning as well as most of the neurotransmission in the peripheral nervous system. These receptors are composed of five subunits that assemble to generate a functional receptor. Many different subunits exist that are used to form nicotinic receptors in the brain and the periphery and the properties of the receptors depend on the subunit composition, stoichiometry, and order. Our studies focus on generating receptors of known composition, stoichiometry, and order and characterizing them pharmacologically and physiologically to be able to understand, for example, why a specific SNP in the alpha5 subunit is associated with excessively heavy smoking.

 

Jarda T. Wroblewski: Metabotropic glutamate receptor signaling

Jarda T. Wroblewski
Professor, Pharmacology & Physiology
Wroblewski Lab
wroblewj@georgetown.edu
Office: Med-Dent SW407
Lab: Med-Dent SW406
Education: Polish Academy of Sciences, Ph.D., 1979
Current Research: The main interest of my laboratory is signaling through the mGlu1a receptor. This receptor is responsible for both neurotoxicity and neuroprotection. We are in the midst of experiments examining the different signal transduction mechanisms utilized to achieve these two opposing functions. It appears that one utilizes the canonical G protein signaling cascade and the other is reliant on beta-arrestin-mediated internalizaion of the receptor.

 

Jian-young Wu: Cortical population activity and dynamics

Jian-young Wu
Professor, Neuroscience
Laboratory of cortical dynamics
wuj@georgetown.edu
x7-1614
Office: Med-Dent SE106
Lab: Med-Dent SE101-105
Education: MA, Ph.D, Peking University, 1983, 1986
Current Research: We use voltage-sensitive dyes to visualize cortical neuronal activity and spatiotemporal dynamics of populational neuronal activity. Brain functions are carried out by the activation of large number of neurons. Spatiotemporal patterns such as oscillations and propagating waves are frequently seen during normal brain function such as sensory processing, motor planing, thinking, sleeping and a variety of pathological conditions such as epilepsy and Pakinsons. We study wether wave patterns ( such as spirals and wave compressions) contribute to normal and pathological processes in the cortex. Our ultimate goal is to understand how the functions of the cortex emerge from the organized activity of large number of neurons.

 

Robert P. Yasuda: Structure and function of nicotinic acetylcholine receptors

Robert P. Yasuda
Assistant Professor, Pharmacology & Physiology
Yasuda Lab
yasudar@georgetown.edu
Office: Med-Dent SW407 
Lab: Med-Dent NE411
Education: University of Colorado, Ph.D. 1986
Current Research: My laboratory is involved in the study of the structure and function of neuronal nicotinic receptors in the brain that are composed of five protein subunits that act as ligand-gated ion channels. These receptors are thought to be involved in the ncotine addition seen in smokers. We utilize molecular biological, biochemical and electrophysiological methods to study these receptors. Specifically, we are interested in understanding the nature of the nicotine binding site and how the order of these nicotinic receptor subunits affects function. One approach we are currently using is the creation of concatamers of the nicotinic receptor subunits that allow us to make receptors composed of subunits of known order and composition.

 

There are also a number of affiliate faculty at Georgetown and neighboring institutions who serve as co-mentors for student theses and for laboratories available for rotation projects.

Rachel Barr: Infant learning and memory

Rachel Barr
Associate Professor, Psychology
Georgetown Early Learning Project
rfb5@georgetown.edu
(202) 687-8064
Office: 301A WGR
Lab: 413 WGR
Education: Ph.D. (Otago, Psychology, 1999)
Current Research: Learning in context. I study the transfer of learning as a function of environmental conditions. I have a line of research examining learning from television, books and touchscreens during infancy and early childhood. I also study how bilingual exposure influences transfer of learning.

 

William L. Bell: Ictal semiology, neuroimaging, translational

William L. Bell
Professor, Neurology
EEG Laboratory, Epilepsy Monitoring Unit 
wlb8@georgetown.edu
(202) 444-8607
Office: 7 PHC (Pasquerilla Healthcare Center), Room 7028 D
Lab: EEG 5South, Main; Epilepsy Monitoring Unit C53, CCC 
Education: B.S. Baylor, 1973; M.D. Wake Forest University, 1977
Current Research: The Epilepsy Monitoring Unit (EMU) provides a platform to study ictal semiology and other behavioral aspects of human epilepsy. The EMU is equipped with multichannel EEG scalp and intracranial EEG recording with simultaneous video. In patients with refractory epilepsy we are able to cortically map eloquent areas of cortex. We also obtain correlative neuroimaging: MRI (magnetic resonance imaging), fMRI , PET (positron emission tomography) and ictal SPECT (single photon emission computed tomography). I enjoy collaboration with basic scientists in translational research including profiling of tissue obtained from epilepsy surgery patients. I also have an interest in the mechanisms and risk factors that predispose patients to develop psychogenic seizures. 

 

Leonardo Cohen (NIH): Mechanisms of CNS impairment, treatment, & recovery post-injury

Leonardo Cohen
Chief, Human Cortical Physiology and Stroke Neurorehabilitation Section, NINDS, NIH
Cohen Lab
CohenL@ninds.nih.gov
(301) 496-9782
Office: NIH
Education: MD, University of BsAs, Argentina
Current Research: The goal of our research is to understand the mechanisms underlying plastic changes in the human central nervous system and to develop novel therapeutic approaches for recovery of function after stroke and traumatic brain injury based on these advances. Our work focuses on the human motor system and on motor learning in health and disease. Our research protocols in healthy volunteers intend to gain insight into mechanisms of human neuroplasticity and motor learning, particularly the ability to retain newly learned skills over time. Advances in this understanding in healthy volunteers are subsequently applied to patients with neurological conditions like stroke and traumatic brain injury to facilitate neurorehabilitative processes. We are engaged in translational efforts to develop rational rehabilitative interventions to improve motor disability after stroke and traumatic brain injury using peripheral nerve stimulation, TMS and tDCS and brain computer interface to control grasping motions of orthosis attached to paretic hands, leading to modulation of neural activity in relevant neural networks.

 

Joshua Corbin (Children's): Developmental genetic mechanisms of brain development

Joshua Corbin
Associate Professor, Center for Neuroscience Research
Developmental Neuroscience Laboratory
Jcorbin@cnmcresearch.org
202 476 6281
Office: Children's National Medical Center
Lab: 6th Floor, Children's National Medical Center
Education: BA, Rutgers University; PhD, University of North Carolina-Chapel Hill
Current Research: The Corbin lab studies the genetic and cellular basis of the normal and abnormal development of the mammalian amygdala. Despite an extensive understanding of amygdala function and anatomy, currently little is known regarding the development of this complex structure, and how altered development of the amygdala contributes to the phenotypes observed in developmental disorders such as Autism Spectrum Disorders and Fragile X Syndrome. To address these questions, we use the mouse as an experimental model, employing both standard and cutting edge embryological, transgenic, electrophysiological and optogentic approaches. The ultimate goal of the studies in our lab is to understand the link between developmental events and the assembly of the mature amygdala at a genetic, cellular, structural and functional level.

 

James Giordano: Neuroethics; neuroscience of pain; neuropsychiatric spectrum disorders

James Giordano, PhD
Chief, Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics
Neurobioethics.org
jg353@georgetown.edu
7-1160
Office: Bldg D, Rm 238
Lab: N/A
Education: PhD: City University of NY; Biopsychology, 1986
Current Research: Studies of neural bases of human ecology and moral decisions and action; studies of ethical issues arisisng in and from neuroscientific and neurotechnological research and applications in medicine, public life and national security and defense. Neuroscience of chronic pain, analgesia and pain care (specifically, role of serotonin 5-HT3 receptor system in inflammatory pain).

 

Gholam Motamedi: Effects of hypothermia, and cortical stimulation in epilepsy

Gholam Motamedi, MD
Associate Professor, Neurology
motamedi@georgetown.edu
202-444-1763
Office: Georgetown University Hospital, PHC 7
Education: MD, Tehran University of Medical Sciences, 1987
Current Research: In drug-resistant (refractory) epilepsy the alternative option is limited to surgery however, this is not always a viable option. We explore the potential therapeutic effects of novel modalities in particular hypothermia and cortical stimulation for these patients. We study the effects of hypothermia (cooling) in slice models of epilepsy in Dr. Stefano Vicini's laboratory. We have shown that cooling can terminate epileptiform discharges in these models with no discernible tissue damage. We have also explored the cellular mechanisms of action of hypothermia in particular a possible differential effect on interneurons vs. pyramidal cells.

 

Joseph Neale: Neurobiology of the transmitter N-acetylaspartylglutamate (NAAG)

Joseph Neale
Distinguished Professor, Biology
NAAG Peptidase Inhibitors as Therapeutic Drugs
naelej@georgetown.edu
(202) 687-5574
Office: Reiss, Main Campus, 407
Lab: Reiss, Main Campus, 425
Education: Georgetown Univeristy, B.S., 1966; Ph.D. Georgetown, 1970
Current Research: Our lab has pioneered the characterization of NAAG as the 3rd most prevalent transmitter in the mammalian nervous system.We identified the receptor that NAAG activates (mGluR3) and cloned the peptidase enzymes that inactivate it following synaptic release. In collaboration with colleagues in the medical center at Georgetown, we developed potent inhibitors of these enzymes and have applied these inhibitors in animal models of significant clinical conditions including schizophrenia, inflammatory and neuropathic pain and traumatic brain injury. We continue to study the neurobiology of NAAG n cell and molecular studies and using mice that are null mutant for the enzymes and this receptor and to characterize additional NAAG peptidase inhibitors aiming at providing proof of concept of the clinical importance of these drugs. We have actively collaborated with colleagues in the medical center over the past 20 years, particularly Jarda Wroblewski and Stefano Vicini. 

 

Raymond Scott Turner: Immunotherapies in mouse models of Alzheimer's Disease

Raymond Scott Turner
Professor, Neurology
Memory Disorders Program
rst36@georgetown.edu
(202) 687-7337
Office: 202B Bldg. D
Lab: 268 Bldg. D
Education: MD, PhD, Emory Univ.,1988
Current Research: Active and passive immunization strategies for transgenic Alzheimer's disease (AD) mouse models. Molecular mechanisms, therapeutic effects on memory/behavior and on CNS neuropathologies, and neuroinflammatory effects. Role of ApoE genotype on immunotherapies by using hApoE knock-in AD transgenic mice. 

 

Jean Wrathall: Mechanisms of tissue loss and recovery after spinal cord injury

Jean Wrathall
Professor, Neuroscience
Wrathall Lab
wrathalj@georgetown.edu
(202) 687-1196
Education: Ph.D., Genetics & Molecular Biology, University of Utah, 1969
Current Research: Research in Dr. Wrathall's laboratory is focused the cellular and molecular mechanisms of tissue loss and of functional recovery after spinal cord injury and means to reduce the former and enhance functional recovery. Our goal is to see the information we obtain on basic mechanisms of injury and recovery after spinal cord trauma translated into useful therapies for patients with spinal cord injury.

 

Caroline Zink (NIH): fMRI of reward/motivation and social cognition systems

Caroline Zink
Research Fellow, Genes, Cognition, and Psychosis Program, NIMH, NIH
NeuroImaging of Cognition and Emotion Lab (NICElab)
zinkc@mail.nih.gov
(301) 594-2409
Office: National Institutes of Health: Bldg 10 - Room 3C101
Education: Emory University, B.S., 1999; Emory University, Ph.D., 2005
Current Research: Research in the lab uses fMRI, in combination with genetic, physiological, and behavioral measures to characterize the neural circuitry underlying the various aspects of human cognition and emotion that are relevant to mental illness, particularly schizophrenia. We are especially interested in the dopamine-striatal system as it relates to motivation, salience, reward processing, and decision-making. Illuminating the neural circuitry contributing to, and the genetic influences on, the altered processing of saliency/motivation in schizophrenia may result in a better understanding of schizophrenia in general and potentially lead to the development of more effective treatments. We also focus on neural correlates of social cognition and the neural encoding of the value of social information used to guide appropriate and beneficial social interactions.