Potential cause of HIV-associated dementia revealed

WASHINGTON — Researchers at Georgetown University Medical Center appear to have solved the mystery of why some patients infected with HIV, who are using antiretroviral therapy and show no signs of AIDS, develop serious depression as well as profound problems with memory, learning, and motor function. The finding might also provide a way to test people with HIV to determine their risk for developing dementia.

They say the answer, published in the July 11 issue of the Journal of Neuroscience, may ultimately lead to a therapeutic solution that helps these patients as well as others suffering from brain ailments that appear to develop through the same pathway, including those that occur in the aged.

"We believe we have discovered a general mechanism of neuronal decline that even explains what happens in some elderly folks," says the study's lead investigator, Italo Mochetti, Ph.D., professor and vice chair of the department of neuroscience at Georgetown University Medical Center. "The HIV-infected patients who develop this syndrome are usually quite young, but their brains act old."

The research team found that even though HIV does not infect neurons, it tries to stop the brain from producing a protein growth factor -- mature brain derived neurotrophic factor (mature BDNF) -- that Mochetti says acts like "food" for brain neurons. Reduced mature BDNF results in the shortening of the axons and their branches that neurons use to connect to each other, and when they lose this communication, the neurons die.

"The loss of neurons and their connections is profound in these patients," Mochetti says. HIV-associated dementia occurs in two to three percent of HIV-infected patients using retroviral therapies, all of whom appear to be otherwise healthy, and in 30 percent of HIV-positive patients who are not on medication.

Mochetti believes that HIV stops production of mature BDNF because that protein interferes with the ability of the virus to attack other brain cells. It does this through the potent gp120 envelope protein that sticks out from the viral shell -- the same protein that hooks on to brain macrophages and microglial cells to infect them. In earlier experiments, when we dumped gp120 into neuronal tissue culture, there was a 30-40 percent loss of neurons overnight. That makes gp120 a remarkable neurotoxin."

This study is the product of years of work that has resulted in a string of publications. It began when Mochetti and his colleagues were given a grant from the National Institutes on Drug Abuse to determine whether there was a connection between the use of cocaine and morphine, and dementia. (A substantial number of HIV-positive patients have been or currently are intravenous drug users.)

They found that it was the virus that was responsible for the dementia, not the drugs, and so they set out to discover how the virus was altering neuronal function.

Their scientific break came when the researchers were able to study the blood of 130 women who were enrolled in the 17 year-old, nationwide WHIS (Women's Interagency HIV Study, directed at Georgetown by Mary Young, M.D.), which has focused on the effects of HIV in infected females. In one seminal discovery, Mochetti and colleagues found that when there was less BDNF in the blood, patients were at risk of developing brain abnormalities. He published this finding in 2001 in the May 15 issue of AIDS.

In this study, Mochetti, Alessia Bachi, Ph.D., and their colleagues studied the brains of HIV-positive patients who had died, and who had developed HIV-associated dementia. They also found that neurons had shrunk, and that mature BDNF had substantially decreased.

He and his colleagues then worked out the mechanism responsible for this destruction of neurons.

Normally, neurons release a long form of BDNF known as proBDNF, and then certain enzymes, including one called furin, cleave proBDNF to produce mature BDNF, which then nurtures brain neurons. When cut, proBDNF is toxic, leading to "synaptic simplification," or the shortening of axons. It does this by binding to a receptor, p75NTR, that contains a death domain.

"HIV interferes with that normal process of cleaving proBDNF, resulting in neurons primarily secreting a toxic form of BDNF," Mochetti says. The same imbalance between mature BDNF and proBDNF occurs as we age, says Mochetti; although no one knows how that happens. "The link between depression and lack of mature BDNF is also known, as is the link to issues of learning and memory. That's why I say HIV-associated dementia resembles the aging brain."

Loss of mature BDNF has also been suggested to be a risk factor in chronic diseases such as Parkinson's and Huntington's diseases, Mochetti says.

The findings suggest a possible therapeutic intervention, he adds. "One way would be to use a small molecule to block the p75NTR receptor that proBDNF uses to kill neurons. A small molecule like that could get through the blood-brain barrier.

"If this works in HIV-dementia, it may also work in other brain issues caused by proBDNF, such as aging," Mochetti adds.

The finding also suggests that measuring proBDNF in HIV-positive patients may provide a biomarker of risk for development of dementia, he adds.

"This finding is extremely important for both basic scientists and physicians, because it suggests a new avenue to understand, and treat, a fairly widespread cause of dementia," Mochetti says.

###

Alessia Bachi, assistant professor in GUMC's department of neuroscience, is the study's first author. Other co-authors are Valeria Aydoshina and Maia Parsadanian from the department of neuroscience and Luigi Zecchi from the Institute of Biomedical Technologies in Segrate, Italy.

Mochetti and his co-authors report having no personal financial interests related to the study. This work was supported by grants from the U.S. Department of Health and Human Services (1RO1DA026174 and UD1MH083501) and the Latham Trust Fund.

About Georgetown University Medical Center

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle ofcura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization (BGRO), which accounts for the majority of externally funded research at GUMC including a Clinical Translation and Science Award from the National Institutes of Health. In fiscal year 2010-11, GUMC accounted for 85 percent of the university's sponsored research funding.